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Abstract—An efficient yet rigorous application of diakoptics to
TLM simulation of discontinuities in homogeneously filled waveg-
uides is proposed. The method, based on the expansion of the

time-domain Green’s function into frequency independent eigen-
functions, leads to a dramatic reduction of the numerical effort

when compared to the standard Johns Matrix approach. Numer-
ical results show that this new approach provides wide band

absorbing boundaries for waveguide problems where several
modes (whether propagating or evanescent) are present. In this

way, the computational domain is also reduced to just a small
region around the discontinuity, with the absorbing boundaries

placed just a few cells away.

L INTRODUCTION

I T IS NOW commonly acknowledged that discontinuities of

complex shape in waveguide can be effectively analyzed by

time domain methods such as TLM. In fact, their inherent dis-

cretization allows the modeling of discontinuities of arbitrary

geometry almost effortlessly.

However, to obtain accurate results, particular care must

also be used when choosing appropriate absorbing boundary

conditions (ABC’s) to terminate the computational domain, In

the case of waveguide components the side walls are generally

represented by perfect electric conductors. Thus only the input

and output planes need to be modeled explicitly. For example

absorbing boundary conditions such as those reported in [1]

could be implemented on these planes. These ABC’s work

well for a given incidence angle of the field and therefore, in

a waveguide, for a given frequency. In practical time domain

analysis the excitation of the electromagnetic fields inside

a waveguide covers generally a certain bandwidth. Hence,

local approximate boundary conditions cannot be employed

to compute S-parameters over a wide frequency band in a

single run.

As an alternative, a rigorous approach based on the use

of diakoptics [2] can be applied. In time domain diakoptics,

waveguide discontinuities are analyzed by partitioning the
circuit into sub-domains that can be analyzed independently

and then connected together. The modeling of ABC’s is thus
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accomplished by pre-simulating a semi-infinite waveguide

and by using the time domain response of such a structure

to terminate the computational domain. This procedure is

extremely advantageous since it allows pre-processing of

standard subsections and thus to limit numerical analysis to the

specific part of interest, for example the region immediately

around a discontinuity. However, when the boundaries of the

sub-domain are close to the discontinuity, the full Johns matrix

[3] characterizing the dispersive interface impedance in the

time domain must be evaluated and then convolved with the

stream of incident impulses. This procedure has the following

drawbacks:

1) long computation time is needed to calculate the various

convolutions at the nodes on the boundaries;

2) large storage is also required to store the 3-D Johns

matrix.

To overcome these drawbacks, we exploit some properties

of the structures under investigation. In particular, for wave-

guides with frequency independent modal field distribution, the

numerical effort can be reduced dramatically by representing

the TLM incident fields simply as a superposition of modes

which are individually matched in the time domain.

It should be mentioned that this procedure has been already

introduced for a single mode by Eswarappa, Costache, and

Hoefer [4]. This technique works very well when just one

mode is propagating. However, the absorbing walls must be

placed far enough from the discontinuity so that only the

dominant mode prevails. The present approach is the natural

extension of this procedure for higher order modes, allowing

us to place the absorbing walls close to the discontinuity where

these modes are still significant [5].

II. THEORY

In order to explain the theory let us refer to a homoge-

neously tilled waveguide as depicted in Fig. 1. It is well known

that the frequency domain Green’s function of a waveguide

with frequency independent modes @P(r) is of the type

cc

,~(r, ‘T”.(,J) = ~ jjp(u)op(’r)op(r’) (1)
p=]

where r, # are points on the same cross-section S, w is

the angular frequency, and &(w) depends on the particular

excitationlobservation field quantities used. As an example,

when we excite the field by means of a current source and
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Fig. 1. Geometry of a homogeneously filled waveguide.

observe the electric field, $&(u) is of impedance type. In

particular, if we consider a parallel plate waveguide with just

TE~o modes present then j&(w) is the well known expression
-yP(u) = ~ given in [10].

When the modes are frequency independent, the time do-

main Green’s function is easily obtained from (1) as

w

g(r,r’,t – t’) = ~xp(t – t’)a)p(?-)mp(?-’). (2)
p=l

Now XP(t) represents the response of the waveguide in the

time domain when the pth mode is excited. Its nature still

depends on the particular excitation/observation quantities. In

TLM we are interested in the relation between the incident and

the reflected waves, V’ (r, t) and V“ (T, t), respectively. Such

waves are modeled as a superposition of impulses 11~(r) as

shown in (3) and (4). The sum of such waves leads to the

electromagnetic field in a given cross-section. The same field

can also be seen as a superposition of modes (Fig. 2)

N

v~(7-,t) ==~ v~(n,t)rfn(r) (3)
Tl=l

N

V’(T->t) = ~ V“(7L,t)nn(r). (4)
n=l

In the frequency domain the relation between incident and

reflected waves is simply given by the reflection coefficient

I’(u) in a certain waveguide cross section. In the time domain

that relation becomes a convolution of the incident wave with

the impulse response of the waveguide.

V’(?’,t) =
/

g(r, r’, t – t’) * V’(r’, t’) /2!/ (5)
5

where * denotes numerical convolution.

The integration over the cross-section S is necessary in

order to take into account interaction between different points,

r and r’, in the same cross-section.

By inserting (2) and (3) into (5), and by defining the cou-

pling coefficient between modes and TLM impulse functions

C,.p==
/

IIn(r’)op (?”’) (w
s

we obtain:

P

[

N

1VT(T, t) = ~ @p(T)Xp(t – t’) * ~ CnpVi(n, t’) . (6)
p=l n=l

Ey

Node!

(a)

Ey

(b)

Fig. 2, (a) Field in the waveguide cross-section as :~ superposition of TLM

impulses. (b) Field in the waveguide cross-section as a supe~osition of modes.

The spatial Fourier analysis performed by the matrix C

allows us to separate the overall field into a sum of modes.

In particular, the term ~~=1 C~pVi (r, t’) extracts from the
incident wave V’ (r, t) (superposition of all incident modes) the

amplitude of the incident pth mode. The pth mode so isolated is

convolved with its reflected wave time domain modal response

Xp (t’), in order to obtain the amplitude of the reflected pth
mode. The overall reflected wave is then recomposed by

adding all the reflected modes. The decomposition is done by

means of the same matrix C used now for a spatial Fourier

synthesis.

When the incident wave is represented by just one mode,

only one term of the sum over p in (6) is different from zero.

Hence the reflected wave is also represented by just that mode.

This corresponds to the fact that the impulse response of a

mode is independent of the impulse response of other modes.

However, this condition holds only for uniform wave guides

where no coupling between modes takes place. The sum over

the number of modes in (6) is truncated after P modes since

even at a small distance from a discontinuity the field in the

waveguide can be generally represented as a superposition of

just the first few modes.

The reflected wave impulse response of the pth mode

xP (t’) is computed with the diakoptic procedure used in [8].
An impulse in time, with the spatial distribution of the pth

mode, is injected into a semi-infinite empty waveguide. The

reflected stream of impulses generated during such a pre-

simulation is then stored. The process is repeated for all

the modes accounted for in the absorbing boundary. Note

that it is necessary to compute and store such Johns streams

only once for a certain waveguide. They amethen introduced
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Fig. 3. Network representation of the transformation from the TLM trans-
mission lines to transnussion lines corresponding to modes in the waveguide.

in (6) to terminate the P modes present in the vicinity of

a discontinuity. Also the matrix C is computed only once

for a given waveguide after the modes have been isolated.

For a rectangular waveguide the elements of this matrix are

known in closed form, while for the general case a numerical

integration is necessary.

Equation (6) is linked with the transmission line represen-

tation of our problem. Essentially the whole process described

above has a simple interpretation in terms of the network in

Fig. 3 where the ports on the left are connected to the TLM

transmission lines. Therefore, lV ports are present on the left.

The IV voltages and currents, or the amplitudes of the incident

and scattered waves on the various ports, sample the electric

and magnetic field in the waveguide cross section. The same

field distribution can also be described in terms of P modes.

With respect to Fig. 3 the voltages and currents on the P ports

on the right provide the amplitudes of the modes. All the ports

on the right are independent, and each of them is connected

to a properly terminated transmission line which delivers the

corresponding Johns stream.

Note that in this way not only infinitely long waveguides can

be simulated (matched condition), but also other terminations

such as metallic walls or lossy dielectrics placed at a certain

distance along the z direction, or any arbitrary dispersive

impedance.

It is now convenient to multiply both sides of (6) by IIm(r’)

and to integrate over the whole cross-section S in order to

recover the reflected impulse at the rnth node; we obtain

P

[

N

1
V“(m,t) ==~ crnp~p(t– t’) * ~ Cmpv’(n,t’) (7)

p=l n=l

For computational purposes we introduce the arrays

y’ (t)= E:landyr(’)”rli‘8)
containing the spatial configuration of impulses, the matrix

C composed of the elements CnP, and the diagonal matrix J

composed of the elements XP(t – t’) so that we can write the

entire absorbing process in a compact form. ~;

~“(k) = CJ(k’) * CT~(k – k’) (9)

where the time has been discretized as t = M.!&

In order to match the field incident upon the boundary,

(9) must be applied at every iteration. The matrices C and

J are precomputed as described above. The decomposition

of the incident wave into incident modes is done for every

iteration k, The amplitude of each incident mode is stored so

that at the next iteration, k + 1, only one more decomposition

is necessary. After the Pth convolution (one for each mode)

the complete reflected wave is recomposed from the reflected

mode amplitudes and spatially sampled.

III. APPLICATION AND NUMERICAL RESULTS

The application to a two-dimensional problem is now quite

straightforward. If we assume a TE1o-mode propagating in

the waveguide and we discretize the guide with a TLM

mesh [9] it can be seen that the impulses traveling in the

z-direction will propagate toward the absorbing boundaries.

Such impulses sample the field components in the wave-

guide. The eigenfunctions for the Ey component are well

known

n7rx
On(r) = On($) = sin — (lo)

u“

In order to apply the modal Johns matrix we must then

decompose the wave incident upon the boundary into a sum

of eigenfunctions of the kind sin ?, and we must convolve

each mode separately, as described above, with the appropriate

pre-computed modal Johns matrix.

The procedure can also be applied to a three-dimensional

problem. The first step is to separate the impulses as belong-

ing to a TE or TM configuration. Then each TE (or TM)

configuration is separated into modes by means of the proper

eigenfunction.

It is clear that we must obtain a compromise between

the size of the TLM mesh surrounding the discontinuity

and the number of modes we consider. If we place the

absorbing boundary exactly on the discontinuity we must

consider a large number of modes in order to describe the

complex field around it. Each mode must be convolved

with its Johns stream That leads to a fast TLM simulation

that, unfortunately, is slowed down by the large number

of convolutions. In this case we obtain a TLM version of

mode-matching but we do not take full advantage of the

TLM capability of modeling complex discontinuities. As we

move the absorbing walls away from the discontinuities,

all higher order modes are progressively attenuated until

(depending on the excitation) only the fundamental mode or
the first few modes are present. In this case we need a larger

mesh (larger computational time and memory occupation)

but only one convolution. The best compromise is reached

by moving the absorbing boundaries a few cells away from

the discontinuity so that the TLM mesh is still small and
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Fig. 4. Phase constant and attenuation for the TEIc I, TEw and TEw in a

WR (28) waveguide. Comparison between TLM and analytical valnes. .J~,,
indicates the position of the modal ABC’s; * indicates the position of the

point source.

the number of modes to be considered is reduced to 2

or 3. This compromise gives us a saving in computational

time of one order of magnitude if compared to the classical

(single mode) approach. In addition we have the following

advantages:

—The modal absorbing boundaries are not sensitive to

the excitation, so even if we excite a waveform with

frequency content above the second mode cutoff (which

would excite a propagating second mode) the results are

not affected. This is particularly important when we want

reliable results close to the second cutoff frequency. It

leads to a very robust simulation where instabilities in

the ABC’s were never encountered.

—The signal travels very quickly through the small compu-

tational domain so that we can use relatively short Johns

matrices.

In order to verify the capacity of the modal Johns matrix

to match modes above and below cutoff, the propagation

constant, ~(~), and the attenuation constant, a(~), of a WR

(28) waveguide have been calculated. To compute the above

parameters an empty waveguide has been discretized and ex-

cited by a point source in order to excite several modes, with a

bandlimited excitation in time. The sepamtion between modes

allows us to obtain the phase constant and the attenuation for

the first three modes with a single simulation, The results are

shown in Fig. 4. In the frequency bands between the cutoff of

the first modes they are within 0.5% of the analytical values,

while the results close to the cutoff frequencies worsen (error

of a few percent) due to the difficulty in modeling modes at

the cutoff in the time domain.

The new modal Johns matrix has been used to determine the

S-parameters of two discontinuities in a rectangular waveguide

WR (28): a symmetric thick iris and an asymmetric rectangular

post. The excitation is a signal with frequency content covering

the dominant operating range of the waveguide. The choice

of such a signal guaranties a faster convergence toward the

solution. In addition, avoiding the frequencies at the cutoff

eliminates the ringing of a mode with very low group velocity

that remains in the mesh for a long time. This reduces the

truncation error.
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The thick iris has been studied with a mesh of size 20 x 62.

Three modes have been considered in the absorbing process

for absorbing planes placed )Io/20 from the iris (aperture

a’ = 2u/3 and thickness t = a/6). The results have been

compared with those obtained with a modiiied mode matching

method and with those of Marcuvitz [7].

The results for magnitude and phase oft he iris with aperture

a’ = 2u/3 and thickness t = a/6 are shown in Figs. 5 and

6. The good agreement in the phase of S-parameters shows

that the reactive load of the iris due to the modes below cutoff

has also been correctly simulated by the higher order modal

Johns matrices.

The asymmetric transverse strip has been examined with

the same discretization as the iris, matching all modes (even

and odd) up to the TE50. The number oIf modes considered

in the ABC’s has been determined by increasing the number

of modes until a convergence in the results is obtained. A

further check is to compute the amplitude of each mode (an

intermediate step in the computation of (!))) to verify that the

modes not considered do not store energy, Results are shown

in Fig. 7 and compared with those of Marcuvitz.

In order to evaluate the increase in efficiency of a TLM sim-

ulation due to this new approach, a disccmtinuity of arbitrary

shape has been analyzed with the classical approach (single-

mode Johns matrix placed far away from the discontinuity)

and the modal approach (Fig. 9). The results for such a

discontinuity are shown in Fig. 8. In the classical approach

particular care has been devoted to the spectrum of the chosen
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excitation. In fact the bandlimited excitation must not extend

beyond the cutoff frequency of the second mode, so that the

second mode is not propagating. The distance at which the

single mode Johns matrix has been placed has been determined

such that the second mode field has decayed to at least 1qOof

the initial value. Mesh size and CPU time (on an HP9000-

755 workstation) for the different cases are summarized in

Table I.

In the table a node-to-node convolution (full convolution)

as described in [3] has been included for completeness. The

savings in memory and CPU time obtained with the new

approach are of nearly one order of magnitude if compared

to the classical approach, and two orders of magnitude if

compared to a full convolution.
It is expected that the experience gained during these

simulations will be precious in three-dimensional problems

where the saving should be even larger than in the two-

dimensional case.

IV. CONCLUSION

A new wideband absorbing boundary able to handle higher

order modes (above or below cutoff) in homogeneous wave-

guides has been introduced. The results obtained show that

the new modal approach is very stable and insensitive to

excitation. By using modal absorbing boundaries in the time

domain we need to discretize only the region around the

Fig. 9. Inclined iris discontinuity in rectangular waveguide. J1 indicates the

position of the classical Johns matrix boundary (one mode ABC as described

in [4]). Jm indicates the position of the modal Johns matrix boundary (five

modes).

TABLE I

COMPARISONOF MESH SIZE AND CPU TIME FOR SINGLE MODE, MULTI-MODE,

ANO NODE-TO-NODE AB C>s FOR THE ANALYSIS OF THE 450 INCLINED IRIS

Type of ABC Mesh Size in Al CPU time

Full Convolution 62X 30 -lb.

Classical J, (one mode) 62X 240 250 SCC. +

I Mrdtimodst J- (five modes) 162x30 I 30 sec. I

discontinuity (where the field is very complex) and treat

homogeneous subregions through their modal response.
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