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Abstract—An efficient yet rigorous application of diakoptics to
TLM simulation of discontinuities in homogeneously filled waveg-
uides is proposed. The method, based on the expansion of the
time-domain Green’s function into frequency independent eigen-
functions, leads to a dramatic reduction of the numerical effort
when compared to the standard Johns Matrix approach. Numer-
ical results show that this new approach provides wide band
absorbing boundaries for waveguide problems where several
modes (whether propagating or evanescent) are present. In this
way, the computational domain is also reduced to just a small
region around the discontinuity, with the absorbing boundaries
placed just a few cells away.

1. INTRODUCTION

T IS NOW commonly acknowledged that discontinuities of

complex shape in waveguide can be effectively analyzed by
time domain methods such as TLM. In fact, their inherent dis-
cretization allows the modeling of discontinuities of arbitrary
geometry almost effortlessly.

However, to obtain accurate results, particular care must
also be used when choosing appropriate absorbing boundary
conditions (ABC’s) to terminate the computational domain. In
the case of waveguide components the side walls are generally
represented by perfect electric conductors. Thus only the input
and output planes need to be modeled explicitly. For example
absorbing boundary conditions such as those reported in [1]
could be implemented on these planes. These ABC’s work
well for a given incidence angle of the field and therefore, in
a waveguide, for a given frequency. In practical time domain
analysis the excitation of the electromagnetic fields inside
a waveguide covers generally a certain bandwidth. Hence,
local approximate boundary conditions cannot be employed
to compute S-parameters over a wide frequency band in a
single run.

As an alternative, a rigorous approach based on the use
of diakoptics [2] can be applied. In time domain diakoptics,
waveguide discontinuities are analyzed by partitioning the
circuit into sub-domains that can be analyzed independently
and then connected together. The modeling of ABC’s is thus
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accomplished by pre-simulating a semi-infinite waveguide
and by using the time domain response of such a structure
to terminate the computational domain. This procedure is
extremely advantageous since it allows pre-processing of
standard subsections and thus to limit numerical analysis to the
specific part of interest, for example the region immediately
around a discontinuity. However, when the boundaries of the
sub-domain are close to the discontinuity, the full Johns matrix
[3] characterizing the dispersive interface impedance in the
time domain must be evaluated and then convolved with the
stream of incident impulses. This procedure has the following
drawbacks:

1) long computation time is needed to calculate the various

convolutions at the nodes on the boundaries;

2) large storage is also required to store the 3-D Johns

matrix.

To overcome these drawbacks, we exploit some properties
of the structures under investigation. In particular, for wave-
guides with frequency independent modal field distribution, the
numerical effort can be reduced dramatically by representing
the TLM incident fields simply as a superposition of modes
which are individually matched in the time domain.

It should be mentioned that this procedure has been already
introduced for a single mode by Eswarappa, Costache, and
Hoefer [4]. This technique works very well when just one
mode is propagating. However, the absorbing walls must be
placed far enough from the discontinuity so that only the
dominant mode prevails. The present approach is the natural
extension of this procedure for higher order modes, allowing
us to place the absorbing walls close to the discontinuity where
these modes are still significant [5].

II. THEORY

In order to explain the theory let us refer to a homoge-
neously filled waveguide as depicted in Fig. 1. It is well known
that the frequency domain Green’s function of a waveguide
with frequency independent modes ®,(r) is of the type

glror'.w) = Z Xp (@) @y (r)Dp(1") (D

p=1

where 7,7/ are points on the same cross-section S, w is
the angular frequency. and x,(w) depends on the particular
excitation/observation field quantities used. As an example,
when we excite the field by means of a current source and
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Fig. 1. Geometry of a homogeneously filled waveguide.

observe the electric field, X,(w) is of impedance type. In
particular, if we consider a parallel plate waveguide with just
TE,,; modes present then )”(I,(w) is the well known expression
Xp(w) = 52 given in [10].

When the modes are frequency independent, the time do-
main Green’s function is easily obtained from (1) as

glr,r' st —t) =D xp(t =), (1) By (). 2)
p=1

Now xp,(t) represents the response of the waveguide in the
time domain when the pth mode is excited. Its nature still
depends on the particular excitation/observation quantities. In
TLM we are interested in the relation between the incident and
the reflected waves, V*(r,¢) and V" (r,t), respectively. Such
waves are modeled as a superposition of impulses IT,,(r) as
shown in (3) and (4). The sum of such waves leads to the
electromagnetic field in a given cross-section. The same field
can also be seen as a superposition of modes (Fig. 2)

N
Vi(r,t) = Z Vi(n, O, (r)

3)
n=1
N
Vi(rt) =),V (n )T (r). 4
n=1

In the frequency domain the relation between incident and
reflected waves is simply given by the reflection coefficient
T'(w) in a certain waveguide cross section. In the time domain
that relation becomes a convolution of the incident wave with
the impulse response of the waveguide.

V(r,t) = /g(r, ot =)« Vit dr’ (35
S
where * denotes numerical convolution.

The integration over the cross-section S is necessary in
order to take into account interaction between different points,
r and 7', in the same cross-section.

By inserting (2) and (3) into (5), and by defining the cou-
pling coefficient between modes and TLM impulse functions

Cop= /Hn('r/)(I)P(fr") dr’
k]

we obtain:

P
V7(r,t) = Z B, (rxp(t —1') %

p=1

N
[Z CrpVi(m, t’)jl . (6)
n=1
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Fig. 2. (a) Field in the waveguide cross-section as a superposition of TLM
impulses. (b) Field in the waveguide cross-section as a superposition of modes.

The spatial Fourier analysis performed by the matrix C
allows us to separate the overall field into a sum of modes.
In particular, the term Y% | C,,, Vi(r,t) extracts from the
incident wave V*(r, ¢) (superposition of all incident modes) the
amplitude of the incident pth mode. The pth mode so isolated is
convolved with its reflected wave time domain modal response
xp(t'), in order to obtain the amplitude of the reflected pth
mode. The overall reflected wave is then recomposed by
adding all the reflected modes. The recomposition is done by
means of the same matrix C used now for a spatial Fourier
synthesis.

When the incident wave is represented by just one mode,
only one term of the sum over p in (6) is different from zero.
Hence the reflected wave is also represented by just that mode.
This corresponds to the fact that the impulse respohse of a
mode is independent of the impulse response of other modes.
However, this condition holds only for uniform wave guides
where no coupling between modes takes place. The sum over
the number of modes in (6) is truncated after P modes since
even at a small distance from a discontinuity the field in the
waveguide can be generally represented as a superposition of
just the first few modes.

The reflected wave impulse response of the pth mode
Xp(t') is computed with the diakoptic procedure used in [8].
An impulse in time, with the spatial distribution of the pth
mode, is injected into a semi-infinite empty waveguide. The
reflected stream of impulses generated during such a pre-
simulation is then stored. The process is repeated for all
the modes accounted for in the absorbing boundary. Note
that it is necessary to compute and store such Johns streams
only once for a certain waveguide. They are then introduced
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Fig. 3. Network representation of the transformation from the TLM trans-
mission lines to transmission lines corresponding to modes in the waveguide.

in (6) to terminate the P modes present in the vicinity of
a discontinuity. Also the matrix C is computed only once
for a given waveguide after the modes have been isolated.
For a rectangular waveguide the elements of this matrix are
known in closed form, while for the general case a numerical
integration is necessary.

Equation (6) is linked with the transmission line represen-
tation of our problem. Essentially the whole process described
above has a simple interpretation in terms of the network in
Fig. 3 where the ports on the left are connected to the TLM
transmission lines. Therefore, N ports are present on the left.
The N voltages and currents, or the amplitudes of the incident
and scattered waves on the various ports, sample the electric
and magnetic field in the waveguide cross section. The same
field distribution can also be described in terms of P modes.
With respect to Fig. 3 the voltages and currents on the P ports
on the right provide the amplitudes of the modes. All the ports
on the right are independent, and each of them is connected
to a properly terminated transmission line which delivers the
corresponding Johns stream.

Note that in this way not only infinitely long waveguides can
be simulated (matched condition), but also other terminations
such as metallic walls or lossy dielectrics placed at a certain
distance along the z direction. or any arbitrary dispersive
impedance.

It is now convenient to multiply both sides of (6) by IL,,(r’)
and to integrate over the whole cross-section S in order to
recover the reflected impulse at the mth node; we obtain

P
V(m,t) =3 Copxp(t — ) %

p=1

N
D CLVi(n, t’)} NG

n=1

For computational purposes we introduce the arrays

Vi(1,t) V7(1,t)
Vi(2,1) Vr(2,t)

Vi) = and V() = . (8)
V*(N,t) V™(N,t)

containing the spatial configuration of impulses, the matrix
C composed of the elements C,,,,, and the diagonal matrix J

composed of the elements x, (¢ — ¢') so that we can write the
entire absorbing process in a compact form -

V7(k)=CI()* CTV*(k - k) 9)

where the time has been discretized as ¢ = kAL

In order to match the field incident upon the boundary,
(9) must be applied at every iteration. The matrices C and
J are precomputed as described above. The decomposition
of the incident wave into incident modes is done for every
iteration k. The amplitude of each incident mode is stored so
that at the next iteration, k + 1, only one more decomposition
is necessary. After the Pth convolution (one for each mode)
the complete reflected wave is recomposed from the reflected
mode amplitudes and spatially sampled.

HI. APPLICATION AND NUMERICAL RESULTS

The application to a two-dimensional problem is now quite
straightforward. If we assume a TEj;g-mode propagating in
the waveguide and we discretize the guide with a TLM
mesh [9] it can be seen that the impulses traveling in the
z-direction will propagate toward the absorbing boundaries.
Such impulses sample the field components in the wave-
guide. The eigenfunctions for the F, component are well
known

B (r) = B, (z) = sinniux.

(10)

In order to apply the modal Johns matrix we must then
decompose the wave incident upon the boundary into a sum
of eigenfunctions of the kind sin 7%, and we must convolve
each mode separately, as described above, with the appropriate
pre-computed modal Johns matrix.

The procedure can also be applied to a three-dimensional
problem. The first step is to separate the impuises as belong-
ing to a TE or TM configuration. Then each TE (or TM)
configuration is separated into modes by means of the proper
eigenfunction.

It is clear that we must obtain a compromise between
the size of the TLM mesh surrounding the discontinuity
and the number of modes we consider. If we place the
absorbing boundary exactly on the discontinuity we must
consider a large number of modes in order to describe the
complex field around it. Each mode must be convolved
with its Johns stream. That leads to a fast TLM simulation
that, unfortunately, is slowed down by the large number
of convolutions. In this case we obtain a TLM version of
mode-matching but we do not take full advantage of the
TLM capability of modeling complex discontinuitics. As we
move the absorbing walls away from the discontinuities,
all higher order modes are progressively attenuated until
(depending on the excitation) only the fundamental mode or
the first few modes are present. In this case we need a larger
mesh (larger computational time and memory occupation)
but only one convolution. The best compromise is reached
by moving the absorbing boundaries a few cells away from
the discontinuity so that the TLM mesh is still small and
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Fig. 4. Phase constant and attenuation for the TE1g, TEgg and TE3g in a
WR (28) waveguide. Comparison between TLM and analytical values. .J,,
indicates the position of the modal ABC’s; * indicates the position of the
point source.

the number of modes to be considered is reduced to 2
or 3. This compromise gives us a saving in computational
time of one order of magnitude if compared to the classical
(single mode) approach. In addition we have the following
advantages:

—The modal absorbing boundaries are not sensitive to
the excitation, so even if we excite a waveform with
frequency content above the second mode cutoff (which
would excite a propagating second mode) the results are
not affected. This is particularly important when we want
reliable results close to the second cutoff frequency. It
leads to a very robust simulation where instabilities in
the ABC’s were never encountered.

—The signal travels very quickly through the small compu-
tational domain so that we can use relatively short Johns
matrices.

In order to verify the capacity of the modal Johns matrix
to match modes above and below cutoff, the propagation
constant, 3(f), and the attenuation constant, (f), of a WR
(28) waveguide have been calculated. To compute the above
parameters an empty waveguide has been discretized and ex-
cited by a point source in order to excite several modes, with a
bandlimited excitation in time. The separation between modes
allows us to obtain the phase constant and the attenuation for
the first three modes with a single simulation. The results are
shown in Fig. 4. In the frequency bands between the cutoff of
the first modes they are within 0.5% of the analytical values,
while the results close to the cutoff frequencies worsen (error
of a few percent) due to the difficulty in modeling modes at
the cutoff in the time domain.

The new modal Johns matrix has been used to determine the
S-parameters of two discontinuities in a rectangular waveguide
WR (28): a symmetric thick iris and an asymmetric rectangular
post. The excitation is a signal with frequency content covering
the dominant operating range of the waveguide. The choice
of such a signal guaranties a faster convergence toward the
solution. In addition, avoiding the frequencies at the cutoff
eliminates the ringing of a mode with very low group velocity
that remains in the mesh for a long time. This reduces the
truncation error.
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The thick iris has been studied with a mesh of size 20 x 62.
Three modes have been considered in the absorbing process
for absorbing planes placed Ag/20 from the iris (aperture
o’ = 2a/3 and thickness ¢ = a/6). The results have been
compared with those obtained with a modified mode matching
method and with those of Marcuvitz [7].

The results for magnitude and phase of the iris with aperture
a’ = 2a/3 and thickness ¢ = a/6 are shown in Figs. 5 and
6. The good agreement in the phase of S-parameters shows
that the reactive load of the iris due to the modes below cutoff
has also been correctly simulated by the higher order modal
Johns matrices.

The asymmetric transverse strip has been examined with
the same discretization as the iris, matching all modes (even
and odd) up to the TEgg. The number of modes considered
in the ABC’s has been determined by increasing the number
of modes until a convergence in the results is obtained. A
further check is to compute the amplitude of each mode (an
intermediate step in the computation of (9)) to verify that the
modes not considered do not store energy. Results are shown
in Fig. 7 and compared with those of Marcuvitz.

In order to evaluate the increase in efficiency of a TLM sim-
ulation due to this new approach, a discontinuity of arbitrary
shape has been analyzed with the classical approach (single-
mode Johns matrix placed far away from the discontinuity)
and the modal approach (Fig. 9). The results for such a
discontinuity are shown in Fig. 8. In the classical approach
particular care has been devoted to the spectrum of the chosen
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excitation. In fact the bandlimited excitation must not extend
beyond the cutoff frequency of the second mode, so that the
second mode is not propagating. The distance at which the
single mode Johns matrix has been placed has been determined
such that the second mode field has decayed to at least 1% of
the initial value. Mesh size and CPU time (on an HP9000-
755 workstation) for the different cases are summarized in
Table 1.

In the table a node-to-node convolution (full convolution)
as described in [3] has been included for completeness. The
savings in memory and CPU time obtained with the new
approach are of nearly one order of magnitude if compared
to the classical approach, and two orders of magnitude if
compared to a full convolution.

It is expected that the experience gained during these

simulations will be precious in three-dimensional problems
where the saving should be even larger than in the two-
dimensional case. '

IV. CONCLUSION

A new wideband absorbing boundary able to handle higher
order modes (above or below cutoff) in homogeneous wave-
guides has been introduced. The results obtained show that
the new modal approach is very stable and insensitive to
excitation. By using modal absorbing boundaries in the time
domain we need to discretize only the region around the
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Fig. 9. Inclined iris discontinuity in rectangular waveguide. J1 indicates the
position of the classical Johns matrix boundary (one mode ABC as described

~ in [4]). Jm indicates the position of the modal Johns matrix boundary (five

modes).

TABLE 1
COMPARISON OF MESH SIZE AND CPU TIME FOR SINGLE MODE, MULTI-MODE,
AND NODE-T0O-NODE ABC’S FOR THE ANALYSIS OF THE 45° INCLINED IRIS

Type of ABC Mesh Size in Al CPU time
Full Convolution 62 %30 ~1h
Classical J; (one mode) 62 X 240 250 sec.
Multimodal J; (five modes) 62 % 30 30 sec.

discontinuity (where the field is very complex) and treat
homogeneous subregions through their modal response.
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